# "Simulating" Emission-Line Galaxies for Ongoing and Future BAO Surveys

### Shun Saito Missouri S&T, USA Nov 7th 2019

"The first Shanghai Assembly on Cosmology and Galaxy Formation" Shanghai, China M



## New Astrophysics Group at Missouri S&T

### In Rolla, Missouri (100 mile from St. Louis)





### Marco Cavaglia

- Gravitational Wave
- LIGO



### Shun Saito (me)

- cosmology, LSS
- HETDEX, PFS

Missouri S&T joins dark energy experiment to solve accelerating cosmos mystery

Posted by Delia Croessmann On September 26, 2019

- "Institute for Multi-messenger Astrophysics & Cosmology (*iMAC*)"
- Keep your eyes on future faculty hiring (+5 in principle...)

#### Shun Saito (Missouri S&T)

## Introduction



- All ongoing & future BAO galaxy surveys aims at **Emission Line Galaxies** at z > 1.
- Essential to construct a **realistic Mock Catalog** for ELGs. Does the Halo Occupation Distribution method work well?
- Observed ELGs are "special populations".
  - eBOSS, PFS, DESI: [OII] after (mag, color) selection.
  - $_{\circ}$  Euclid, WFIRST: H $\alpha$  with flux threthold.

c.f., also Angulo's talk

- Understanding interplay ISM physics in galaxy formation. e.g., Hirschmann+(2017)

## Outline



- 1) How to model Emission Line fluxes?
  - find an empirical relation b/w  $F_{EL}(M^*, SFR, ...)$  in COSMOS.

SS, de la Torre, Ilbert+, to appear on arXiv this month.

- 2) How to paint ELGs in *N*-body simulations?
  - embed our COSMOS model into the UniverseMachine. Preliminary

SS, Hearin, Samushia+, in prep.





## **Empirical Approach to Model EL fluxes**

- Attempt to find an empirical mapping from continuum to ELs.
- 0.5M galaxies w/ 31 bands (UV-NIR) to K<24.7 over 1.38deg<sup>2</sup> ≥ in COSMOS2015 (Laigle+2016)
- calibrate our model only with available spectrum dataset.
  - $\Rightarrow$  LF is our prediction. c.f., Izquierdo-Villalba+(2019)

c.f. Jouvel+(2009), Valentino+(2017), Merson+(2017)...



### Simple Model to Galaxy SED "stellar continuum"

- ✦ Redo the SED fitting to the COSMOS2015 photometry Laigle+(2016)
  - stellar continuum
    - \* SPS model templates Bruzual & Charlot (2003)
    - \* Star Formation History (declining or delayed) & Age
    - \* Metallicity, 0.5Z<sub>sun</sub> or Z<sub>sun</sub>
    - \* dust reddening (two templates) Calzetti (2000), Arnout+(2003)  $10^{-k(\lambda)E_{\rm star}(B-V)}$
  - photo-z: fixed with the values in Laigle+(2016)

12 (BC03 templates)  $\times 43$ (ages)  $\times 12$  (SFH and metallicities)  $\times 2 \times 8$  (dust extinction) = 99,072 templates

## Simple Model to Galaxy SED "E

- ✦ SED fitting to the COSMOS2015 photometry
  - Emission Lines from star-forming nebulae
  - \* compute LyC photons from HI, HeI and HeII by integrat

$$L_{\lambda} = \frac{hc}{\lambda} \frac{\alpha_{\lambda}(T_e)}{\alpha_B(T_e)} f_{\gamma} Q_{\text{LyC}}$$

\* specifically derive Hβ luminosity

$$L_{\mathrm{H}_{\beta}} = 4.78 \times 10^{-13} f_{\gamma} Q_{\mathrm{LyC}}$$

\* fix the line ratio to convert to [OII]/H $\beta$ =3, H $\alpha$ /H $\beta$ =2.9 or exceptionally make it free for [OIII]

\* additional dust attenuation  $E_{\text{neb}}(B-V) = \frac{E_{\text{star}}(B-V)}{f}$ 





Schaerer & Vacca (1998)



#### 1. COSMOS EL

### **Dust Attenuation is Key**



### **Dust Attenuation is Key**



f(z) = 0.44 + 0.2z

### **Performance of our Simple Model**



### "Eddington Bias" in our LF prediction



#### 1. COSMOS EL

#### Shun Saito (Missouri S&T)

### Predicted number density of ELGs

- ✦ Our LF predictions allow us to estimate the expected number density of ELGs.
  - Predicts larger number of H $\alpha$  in Euclid than Pozetti+(2016).



## UniverseMachine Model

- Provides an empirical relation of
  (M\*,sSFR) ⇔ N-body subhalos (merger histories)
- N-body simulation

### **BolshoiP**

 $L_{box} = 250 Mpc/h, M_p = 1.5 \times 10^8 M_{sun}/h$ 

### MDPL2

 $L_{box} = 1$ Gpc/h,  $M_p = 1.5 \times 10^9 M_{sun}/h$ 

Lightcone is available (0<z<8, 1600deg<sup>2</sup>)

### \*OuterRim available soon

 $L_{box} = 3Gpc/h, M_p = 1.85 \times 10^9 M_{sun}/h$ 

=> Combine with (M\*,sSFR)  $\Leftrightarrow$  (F<sub>EL</sub>) in our COSMOS.

### Behroozi+(2019)



Figure 1. Visual summary of the method for linking galaxy growth to halo growth (§3).

## **Preliminary Investigation**

- As an example, mimic the selection in DESI [OII] ELGs.

$$\begin{array}{ll} 20 < g < 23.5 & 0.3 < r-z < 1.6 \\ g-r < 1.15(r-z) & g-r < -1.2(r-z) + 1.6 \end{array}$$

**&**  $F_{\rm [OII]} > 2 \times 10^{-16} \, {\rm erg/s/cm^2}$   $n_{\rm g} \sim 5 \times 10^{-4} \, [(h/{\rm Mpc})^3]$ 



- In principle, we can do a similar investigation for **eBOSS & PFS**.
- Two simple questions
  - 1) Understand the selection in terms of HOD.
  - 2) What happens if we infer HOD from  $w_p$ ?



### 1) Understand the selection in terms of HOD



### 1) Understand the selection in terms of HOD



### 1) Understand the selection in terms of HOD



## 2) What happens if we infer HOD from $w_p$ ?



◆ Simple 5-parameter HOD in Zheng+(2005) can fit to w<sub>p</sub> but *WRONG*!

◆ Exact HOD cannot fully explain the DESI w<sub>p</sub>. Assembly bias? e.g., Zentner+(2013)

### Summary

- ELG Mock Catalog shall play an essential role in forthcoming BAO surveys.
- Understand a galaxy selection in terms of galaxy properties:
  - Empirical relation b/w EL fluxes & galaxy properties in COSMOS2015.
  - Embed this to UniverseMachine which gives (M\*,sSFR) ⇔ DM halo properties.
- Showed a preliminary investigation for DESI-like selection.
  - Constraining HOD from  $w_p$  is *NOT* a good idea for ELGs.
  - Can be validated with e.g., eBOSS ELGs. Guo+(2019), Alam+(2019)
  - We will investigate the best strategy with our UM-COSMOS ELG mock.

### Appendix



### Appendix

