

Constrain the Milky Way Mass Profile with Phase Space Distribution of Satellite Galaxies

$M (< r | M_{vir}, c)$

Nov 6 2019@SJTU

Zhaozhou Li (李昭洲) Shanghai Jiao Tong University

Collaborators: Jiaxin Han (SJTU) Wenting Wang (SJTU) Ting Li (Carnegie) Yongzhong Qian (UMN/TDLi) Yipeng Jing (SJTU)

Why we care about Milky Way mass & profile

- Basic properties of our home galaxy
 - Galactic dynamics
 - Formation and assembly history of the MW
- Basis for validating theory predictions from local observation
 - Dark matter detection
 - Cosmology, e.g. expected baryon fraction, number of satellites
 - Gravity Theory

Milky Way (MW) Mass: still very uncertain!

Challenges in data & model

- Virial radius is far beyond tracers like stars
- Poor observations in outer halo
- Model uncertainty: $\beta(r)$, n(r) or form of DF
- Observation error and incompleteness

Milky Way (MW) Mass: still very uncertain!

Challenges in data & model

- Virial radius is far beyond tracers like stars
 Use satellite galaxies instead
- Poor observations in outer halo
 Gaia
- Model uncertainty: β(r), n(r) or form of DF
 Dynamical model based on simulation
- Observation error and incompleteness

Bayesian statistics

Satellite galaxies: best tracers for MW outer halo

Virtues:

4

- Extended distribution
 the only tracers beyond 100 kpc or farther
- Proper motion (pm) available: Gaia
- Well understood population
 knowledge from theory and simulations
 well phase-mixed (Han+ 2019)

⇒ physical model based on simulation and equilibrium assumption

Data:

- 28 satellites with Gaia DR2 pm
 40 kpc < r < 280 kpc
- homogeneous selection function: distant and faint galaxies are missed $N_{star}(M_V < 20.9) \sim 5$

How kinematics reveal mass

Popular methods: Jeans Equation, Distribution Function Poor observation ⇒ heavier model dependence for outer halo

Extract info from simulations to mitigate model dependence

- statistics: instantaneous kinematics (Busha+ 2011, Boylan-Kolchin+ 2013, Patel+2017, ...), orbit circularity (*Barber+ 2013*), angular momentum (*Patel+2018*)
- + orbital distribution: p(E, L | M) (Li+ 2017, Callingham+ 2018) more efficient use of both data and simulation *E* is not observable \Rightarrow calibration required

+ phase space distribution function $p(\mathbf{r}, \mathbf{v}) = \frac{p(E, L)}{8\pi^2 L T_r(E, L)} \equiv f(E, L)$

similarity in halo structures \Rightarrow stacking & scaling

 $p(\mathbf{r}, \mathbf{v} \mid M, c) = \frac{1}{r_{c}^{3} v_{c}^{3}} \tilde{f}$

complete description to satellite kinematics precise & unbiased rigorous treatment to observation error and incompleteness

Infer Mass & concentration

Observation (\mathbf{r}, \mathbf{v}) vs Model $p_{obs}(\mathbf{r}, \mathbf{v} | M, c)$

$M = 0.6 \times 10^{12} M_{\odot}$

Likelihood:

 $p(M,c \mid \{w\}) \propto \left| \prod_{i=1}^{n_{\text{sat}}} p_{\text{obs}}(w_i \mid M,c) \right| p(c \mid M) p(M)$

Observational effects included

 $M = 1.2 \times 10^{12} M_{\odot}$

Prior information: e.g. *M*-c relation, or other indep. measurements

Test with mock sample from simulation

Example using 40 tracers ~15% precision level for halo mass well recover the mass profile

7

Method comparison: better than Jeans method

- $+ p(E, L \mid M, c)$: orbital distribution
 - p(E, L | M): Li+ 2017; Callingham+ 2018; M-c relation assun
- oPDF (Han+ 2015): based on steady-state assumption representative to Jeans equation and Schwarzschild modeling
- + $f(E, L \mid M, c)$: phase space distribution (this work)

steady state (oPDF) ⊏>

$$p(\mathbf{r}, \mathbf{v}) = \frac{p(E, L)}{8\pi^2 L T_r(E, L)} \equiv f(E, L)$$

Z.Z. Li et al. 2019

Current best estimation to MW halo mass

DF model based on **Eagle** simulation 28 MW satellites with Gaia measurement \Rightarrow Constrain total halo mass within **20**%

> $M = 1.23^{+0.21}_{-0.18} \times 10^{12} M_{\odot}$ $c = 9.4^{+2.8}_{-2.1}$

9

Inferred MW mass profile

Even better: using multiple tracer populations

Satellite Galaxies ⇒ Total halo mass Satellites + Stars ⇒ Shape of potential

	Satellites		Satellites + Halo Stars	
	flat prior	M- c relat.	flat prior	<i>M</i> - <i>c</i> relat.
M ^a	$1.29\substack{+0.24 \\ -0.20}$	$1.23\substack{+0.21 \\ -0.18}$	$1.27^{+0.17}_{-0.15}$	$1.26^{+0.17}_{-0.15}$
с	$11.0^{+4.8}_{-3.3}$	$9.4^{+2.8}_{-2.1}$	$11.7^{+3.2}_{-2.5}$	$10.4^{+2.3}_{-1.9}$
^a The ı	unit of <i>M</i> is 10	$^{12}M_{\odot}$.		

M-c relation: Dutton & Macciò 2014

Halo stars: 40 to 80 kpc

Rotation curve measured by Huang+ 2016

Satellites: 40 to 300 kpc

Hydro simulation matches MW satellites better

The Bayesian Evidence of Eagle is 25 times higher than SAM

Hydro simulation

Orbits of small pericenter distance Enhanced satellite disruption due to stellar disc in hydro and real world

Circles: observed satellites

Shade: expected distribution predicted by DF based on simu.

Semi-analytical model on dark simulation

Hydro simulation matches MW satellites better

The Bayesian Evidence of Eagle is 25 times higher than SAM

Orbits of small pericenter distance Enhanced satellite disruption due to stellar disc in hydro and real world

Circles: observed satellites

Shade: expected distribution predicted by DF based on simu.

Hydro simulation matches MW satellites better

Hydro simulation

Orbits of small pericenter distance Enhanced satellite disruption due to stellar disc in hydro and real world

Circles: observed satellites

Shade: expected distribution predicted by DF based on simu.

Mimic the extra disruption by manually remove a fraction of orbits with small dperi in SAM

> Semi-analytical model on dark simulation with enhanced disruption

Bonus: reducing uncertainty in satellite orbits

Satellite orbits reveal their infall history and the assembly of MW The usage is blocked by large uncertainty in proper motion Using DF model as prior can **reduce the uncertainty** in satellite orbits

Raw measurements

Posterior kinematics

Summary and Outlook

- Current BEST estimation to MW halo mass
 - ✓ best tracer for outer halo: satellite galaxies
 - ✓ best data available: 28 satellites with Gaia DR2 proper motion
 - physical DF from simulation \rightarrow wide usage ✓ realistic model:
 - ✓ rigorous statistics: Bayes for selection function, observational error Li et al. 2017 ApJ, 850, 116 Li et al. 2019 arxiv:1910.11257 Li et al. 2019 in prep, coming soon!
- Hydro simulations indeed match satellite dynamics better
- Future improvements in MW mass - more satellites
 - combination with other tracers (e.g. halo stars, star clusters)
 - peculiarities of MW and its history
- The DF construction method can apply to other tracers or galaxy groups & clusters

 $M = 1.23^{+0.21}_{-0.18} \times 10^{12} M_{\odot}$ $c = 9.4^{+2.8}_{-2.1}$

Varying satellite sample selection

The mass estimation is robust against various sample selection criteria

General performance with mock sample

Varying the number of tracers

- Unbiased
- Low systematics (<10%) negligible comparing to current statistical uncertainty level

Z.Z. Li et al. 2019

Enhanced satellite disruption due to stellar disc in hydro simulations

Richings 2018

