LyA Radiative Transfer: Modeling Spectrum and Surface Brightness Profile of LyA-Emitting Galaxies at z=3-6

Hyunmi Song (KASI) Kwang-II Seon & Ho Seong Hwang (KASI) Shanghai 2019 3-7 November 2019 @ Jiao Tong University

Song et al., submitted to ApJ

- HI 2p-Is transition 1216Å •
- LyA emission through •
 - Collisional excitation •
 - Recombination •

 HII regions - Strong emission from star-forming galaxies - Probe of early universe (e.g., SILVERUSH, MUSE, HETDEX, ...)

+ Resonance line

- Huge number of scatterings
- Sensitively affected by spatial and kinematic distributions of medium

 $v_{
m exp}$

LyA Spectrum

Le Fevre et al. (2015)

92 UV continuum-selected LBGs at <z>=2.65

LyA Halo

LyA Radiative Transfer

$$\frac{dI_{\nu}(s,\mathbf{n})}{ds} = -\begin{bmatrix} \alpha_{\nu}^{\mathrm{HI}}(s) + \alpha_{\nu}^{\mathrm{dest}}(s) \end{bmatrix} I_{\nu}(s,\mathbf{n}) + \underbrace{j_{\nu}(s)}_{\mathrm{II: \ emission}} + \underbrace{\int d\nu' \int d^{3}\hat{\mathbf{n}}' \ \alpha_{\nu'}(s) I_{\nu'}(s,\hat{\mathbf{n}}') R(\nu,\nu',\mathbf{n},\hat{\mathbf{n}}')}_{\mathrm{III: \ scattering}}.$$
 (58)

This is analytically solvable only for simple cases. (e.g., uniform, static gas cloud surrounding a central LyA source)

Dijkstra (2017, a review on LyA RT)

So, Monte-Carlo simulation ! (a succession of random scattering events)

- Generate a photon (randomly draw \mathbf{r} , \mathbf{k} , and \mathbf{v}). .
- Let the photon travel a distance d that corresponds to a randomly chosen τ ($\tau = \int_0^d n(\mathbf{x})\sigma d|\mathbf{x}|$). 2.
- After travelling d, decide whether to scatter (by hydrogen or dust) or destruct (by dust) the photon. 3.
 - 3.1. Destruct Go to 1.
 - 3.2. Scatter Draw new k and V, go to 2, and repeat until the photon is escaping or destructed.

Dijkstra (2017)

Expanding shell with constant velocity; Uniform medium distribution; Central point source

Our model

Expanding halo with velocity profile; Density distributions for sources and medium

Medium temperature $=10^{4}K$ Intrinsic LyA spectrum =Voigt profile Source distribution =exp(-r/rs_{cont})

Momentum-driven wind in gravitational potential well

Velocity profile paramete

Optica

Dust-to-g

LaRT (Seon & Kim to be submitted)

Our LyA MCRT modeling

	Table 1 . Parameter Grid of Simulation						
	Parameter	Values					
e radius	$rs_{\rm HI}{}^{\rm a}$	$\left[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 ight]$					
	$r_{\mathrm{peak}}{}^{\mathrm{b}}$	$\left[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 ight]$					
ers	$V_{\mathrm{peak}}{}^{\mathbf{c}}$	$\left[100, 200, 300, 400, 500\right]$					
	$\Delta V^{\mathbf{d}}$	$[-500, -450, -400, \ldots, -100, -50, 0]$					
al depth	$\log { au_0}^{ m e}$	$\left[5.7, 6.0, 6.3, 6.6, 6.9, 7.2 ight]$					
as ratio	$\mathrm{DGR}^{\mathbf{g}}$	$[0.0, 0.2, 0.4, \ldots, 1.6, 1.8, 2.0]$					
Redshift	$z^{\mathbf{g}}$	$z_0 + [0.01, 0.02, 0.03, \dots, 0.08, 0.09, 0.10]$					

13,230 simulations (10⁶ photons/simulation)

LVA Seen by Endse multi unit spectroscopic explorer Examples out of 145 star-forming galaxies at 3<z<6

Reproduce these!

Leclercq et al. (2017)

Fit to spectrum only

e.g., MUSE #1185

Fit to SBP only

e.g., MUSE #1185

Fit to both

e.g., MUSE #1185

Table 3. Best-fit Parameter Values										
MUSE #	\mathcal{L}^{a}	$rs_{ m HI}$	$r_{ m peak}$	$V_{ m peak}$	ΔV	$\log \tau_0$	DGR	z	$\chi^2_{ u,{ m sp}}{}^{ m b}$	$\chi^2_{ m u, SBP}{}^{ m c}$
1185										
	tot	$0.3\substack{+0.1\\-0.1}$	$0.2\substack{+0.0 \\ -0.0}$	300^{+43}_{-43}	-150^{+150}_{-37}	$6.6\substack{+0.1 \\ -0.1}$	$0.0^{+0.4}$	$4.495\substack{+0.000\\-0.000}$	1.88	1.14
82										
	tot	$0.5\substack{+0.4\\-0.1}$	$0.1\substack{+0.0\\-0.0}$	300^{+43}_{-43}	-250^{+47}_{-30}	$6.6^{+0.1}_{-0.1}$	$2.0_{-1.3}$	$3.604^{+0.000}_{-0.000}$	0.94	1.16
6905										
	tot	$0.1^{+0.0}$	$0.0^{+0.1}$	300^{+52}_{-53}	$-300\substack{+44 \\ -83}$	$6.3\substack{+0.3 \\ -0.6}$	$0.0^{+1.3}$	$3.098\substack{+0.001\\-0.001}$	0.82	0.49
1343										
	tot	$0.8\substack{+0.1 \\ -0.3}$	$0.4\substack{+0.2 \\ -0.2}$	200^{+168}_{-100}	-200^{+125}_{-167}	$6.9^{+0.3}_{-0.4}$	$2.0_{-1.4}$	$3.964\substack{+0.002\\-0.004}$	0.96	1.36
53		10.1	10.0	1.42	1.00	10.1		10.000		
	tot	$0.4^{+0.1}_{-0.1}$	$0.1^{+0.0}_{-0.1}$	300^{+43}_{-43}	-50^{+22}_{-23}	$6.3^{+0.1}_{-0.1}$	$2.0_{-1.0}$	$4.776^{+0.000}_{-0.000}$	1.65	1.50
171										
	tot	$0.8^{+0.1}_{-0.4}$	$0.0^{+0.1}$	200^{+48}_{-51}	0_175	$6.3^{+0.2}_{-0.2}$	$2.0_{-1.4}$	$3.882^{+0.003}_{-0.001}$	1.20	0.81
547										
	tot	$0.7^{+0.2}_{-0.2}$	$0.1\substack{+0.1 \\ -0.1}$	300^{+200}_{-78}	-200^{+88}_{-188}	$6.3^{+1.0}_{-0.1}$	$2.0_{-1.4}$	$5.974^{+0.001}_{-0.001}$	1.25	1.07
364										
	tot	$0.9_{-0.4}$	$0.3\substack{+0.4 \\ -0.1}$	200^{+77}_{-70}	-200^{+67}_{-300}	$6.0\substack{+0.3\\-0.3}$	$2.0_{-1.4}$	$3.939^{+0.004}_{-0.001}$	0.68	0.36

LyA source scale radius

MUSE #	$rs_{ m cont}{}^{ m a}$
1185	0.041
82	0.017
6905	0.029
1343	0.016
53	0.030
171	0.025
547	0.011
364	0.014

HI medium scale radius

Velocity change toward edge

Ly A Escape Fraction

0.7 0.6

1.0

0.5

DGR

Spatially-resolved Spectra

- This study is the first attempt to model the observed LyA spectrum and surface brightness profile simultaneously with an expanding halo model.
- · Best-fit results indicate that HI medium has a much more extended distribution than SF regions and accelerating-and-then-decelerating motion toward the edge.
- We could understand better the kinematics of ISM/CGM with spatially-resolved spectra.
- We will extend this study to understand various LyA properties in early universe.

Summary

